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About Me
Giuseppe Fiameni – gfiameni@nvidia.com

• Solutions Architect @ NVIDIA
• Supporting Higher Education and Research 

through collaborations

• Lead of the NVIDIA AI Technology Center 
(NVAITC) program in EMEA

• HPC & AI



Scaling Laws of DL Training
Performance of neural networks increases with model/dataset size

Joel Hestness et al, Baidu Research, 2017
Deep Learning Scaling is Predictable, Empirically
arXiv:1712.00409

Tom Henighan et al, OpenAI, 2020
Scaling laws for autoregressive generative modeling
arXiv:2010.14701
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Overview of Nemo FW
https://github.com/NVIDIA/NeMo

• More than 800 
TFLOPs/sec/GPU

• Trained over 16k+ 
cluster size

• Supports 1M+ 
sequence length

• 4D parallelism
• GPU-accelerated 

data curation

• Broad support for HF 
models

• 23 model families 
SOL accelerated - 
Incl LLM, SSMs, 
MOEs, SD, VLMs, 
VFMs, VLAs

• PEFT: LoRA, p-
tuning, IA3, QLoRA, 
Adapters (Canonical)

• Reinforcement 
learning & Model 
alignment: GRPO, 
RLHF PPO, DPO, 
KTO, IPO, RLAIF, 
SteerLM, Rejection 
Sampling

• Hugging-face like 
pythonic APIs

• Fault tolerance and 
Resiliency to ensure 
smooth training via 
NVRx

Performance 
& Scalability

Model 
Coverage

SOTA 
Algorithms

Usability & 
Compatibility
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Nemotron-4 340B Family of Models & Tools

Nemotron-4 340B Instruct Nemotron-4 340B Reward

User prompts Synthetic Data

• Generate synthetic data at scale
• 9T tokens, 50 spoken + 40 programming
        languages
• Leading performance across benchmarks:
        Math, Instruction following, Human preferences

Synthetic Data Response Score

• Scores on: 
       Helpfulness, Correctness, Coherence.
       Complexity, Verbosity
• Tops Reward Bench leaderboard covering chat,
        safety, and reasoning
           



NeMo curator



What is Clean Data?

• The Earth is flat, and NASA is hiding the truth.

• John Doe’s Social Security Number is 123-45-6789.

• 9375028164730592846159273046851273

• test test test test test test

• …

• In machine learning, a neural network (also artificial neural network or neural net, 

abbreviated ANN or NN) is a model inspired by the structure and function 

of biological neural networks in animal brains.



Why Data Quality Matters
Less is more when pre-training LLMs

FineWeb: decanting the web for the finest text data at scale - https://hf.co/spaces/HuggingFaceFW/blogpost-fineweb-v1

Model Performance



Data Curation Improves Model Perfomance 
NeMo Data Curator enables large-scale high-quality datasets for LLMs 

• Reduce the burden of combing through unstructured data 
sources

• Download data and extract, clean, deduplicate, and filter 
documents at scale

NeMo Data Curator steps:

1. Data download, language detection and text extraction - 
HTML and LaTeX files

2. Text re-formatting and cleaning - Bad Unicode, newline, 
repetition

3. GPU accelerated Document Level Deduplication
• Fuzzy Deduplication
• Exact Deduplication

4. Document-level quality Filtering
• Classifier-based filtering
• Multilingual Heuristic-based filtering

Internet scale 
datasets

Text re-formatting 
+ cleaning Training

Data download + 
detect language + 

extract text

Document-level 
quality filtering

Document-level 
deduplication



NeMo Curator : Text Processing Architecture 
Easily integrate different features into your existing pipelines with Python APIs



NeMo Curator: World-Class Benchmarks

~17x Faster Processing 

Processing time for fuzzy deduplication of 
RedPajama-v2 subset (8TB/1.78T tokens)

~17x
~11

Curator ‘On’
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Near Linear Scaling

Processing time for fuzzy deduplication of 
RedPajama-v2 subset (8TB/1.78T tokens)

Scaling on 1, 2, 3, 4 H100 nodes 80GB‘On’: Data processed with NeMo Curator 

‘Off’ : Data processed with a leading alternative 
library on CPUs

~7% Relative Improvement in Accuracy

Reasoning Accuracy: Average score on Race, 
PiQA, Winogrande, and HellaSwag for 357M 

GPT base model. (Scale: 0-100)

‘On’: Processed data with NeMo Curator 
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Pre-training



Tensor & Pipeline Parallelism Sequence Parallelism
Selective Activation 

Recomputation

Reduced memory footprint and allows 
for large-scale training of LLMs across 

accelerated infrastructure

Working with tensor processing to 
increase the batch size that can be 

support for training

Smart activation checkpointing provides 
greatest trade-off between memory and 

recomputation

Building Generative AI Foundation Models
Efficiently and quickly training models using NVIDIA NeMo

GPU 0

Time

Feature

Traditionally, LLMs (>175GB) 
every activation is recomputed

GPU 1

GPU 2

. . . 

. . . 

. . . 

. . . 

Saved

Recomputed

Batch



Different Parallelism - An example



Different Parallelism - An example
Start with Tensor Parallelism



Different Parallelism - An example
Add Pipeline Parallelism



Different Parallelism - An example
Add Data Parallelism



Different Parallelism - An Example

•Put it all together



MoE Layer

Expert Parallelism
Distributing experts in mixture-of-experts layers over GPUs

Router

Expert 1

Input Token

Expert 2 … Expert N

MoE Layer Router

Expert 1

Input Token

Expert 2 … Expert N

GPU 1 GPU 2 GPU N



Sequence Parallelism (SP)

• SP only shards the outputs of specific transformer layers (typically Dropout and LayerNorm 
activations) along the sequence dimension across tensor parallel (TP) ranks.



Context Parallelism (CP)

• CP partitions the entire sequence (all activations, not just specific layers) across GPUs



SP and CP

• Sequence Parallelism
• Splits the processing of tokens in a 

sequence across multiple GPUs.
• Each GPU has a copy of the model 

parameters and works on a different 
chunk of the input tokens.

• Mostly used for specific layers (like 
Dropout or LayerNorm) and is often 
combined with tensor parallelism for other 
parts of the model.

• Only certain intermediate activations (not 
all) are partitioned, and communication 
needs are lower since each GPU can 
process its chunk mostly independently.

• Context Parallelism
• Splits the entire sequence (all tokens and 

their activations) across multiple GPUs.
• All network inputs and all intermediate 

activations are partitioned along the 
sequence dimension, not just some layers.

• Each GPU works on a subset of the 
sequence and must communicate with 
others to compute attention, since 
attention requires information about all 
tokens (not just the local chunk).

• Can be used standalone (without requiring 
tensor parallelism), and is especially useful 
for very long sequences, reducing the 
memory burden on each GPU.
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Context Parallelism overview |  Benchmark details

Llama2-7B, H100, Megatron-Core v0.6 with nemo.24.03.01 container

• Context parallelism (CP) partitions the 
network inputs and all activations along 
sequence dimension, whereas the previous 
Sequence parallelism (SP) only splits the 
sequence of Dropout and LayerNorm 
activations.

• With CP, Megatron-Core achieves 20x 
speedup for a Llama2-7B model on 1024 
H100 GPUs with 1024K seq length.

• Both CP and SP are also supported in the 
LLaVA pipeline in Megatron-Core for 
multimodality training. 

Context Parallelism for Long-Context Training

https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html
https://github.com/NVIDIA/NeMo/blob/main/docs/source/performance/performance_long_sequence.md
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Fast Distributed Checkpointing for Large-scale Training

2
8

• Megatron-Core’s fully parallel and async approach 
achieves a 42x reduction in checkpoint overhead for a 
Nemotron-4-340B, compared to native torch.save().

• Users have the flexibility to use different training 
configurations when resuming from a checkpoint saved 
with Megatron-Core.

• “save” and “load” APIs almost transparently replace the 
equivalent APIs in Pytorch for ease-of-use.

Train Generative AI Models More Efficiently with New NVIDIA Megatron-Core Functionalities - Blog

https://developer.nvidia.com/blog/train-generative-ai-models-more-efficiently-with-new-nvidia-megatron-core-functionalities/


Integration with NVIDIA Resiliency Extension

What is NVIDIA Resiliency Extension?

• Python package for extending PyTorch-based 
frameworks with resiliency features

• pip install nvidia-resiliency-ext 

• Can be used standalone or with Megatron-Core 
and NeMo

• Open source on GitHub: 
https://github.com/NVIDIA/nvidia-resiliency-ext

Functionality

• Straggler GPU detection 

• Fault and hang detection

• In-job auto restart and graceful exit

• Coming soon:

• In-process restart

• Hierarchical Checkpointing (In-memory & Global 
storage)

NeMo & Megatron-LM integration

• Integration w/ NeMo and Megatron-LM (since 
MCorev0.9)

• Recommended as the best path to achieve the highest 
effective training time and performance for LLMs

In-Process Restart In-Job Restart Workload restart

Target latency ~10-20s ~1-2 min Few minutes

Method
Automatic restart of training 

loop with healthy ranks without 
process restart.

Automatic restart of training 
processes without job restart.

Automatic restart of training job 
without user intervention.

Example recovery 
scenarios

Recover from transient 
network link flap.

Recover from corrupted 
CUDA contexts (e.g., 
uncorrectable ECC).

Recover from permanent node 
or GPU failure.

NVIDIA Resiliency Extension

https://github.com/NVIDIA/nvidia-resiliency-ext


New Feature - Sequence Packing

seq 1 

seq 2 

seq 3 

seq 4 

padding is wasteful

seq 1 seq 2 seq 3 

seq 4 seq 5 

seq 6 seq 7

Without Seq Packing - use padding

With Seq Packing

• Sequence packing is a technique to improve training efficiency 
when handling datasets with variable-length sequences, which is 
common in language modelling

• Eliminates the need for padding

• Allows more tokens to be processed in each micro batch, 
maximizing both GPU compute and GPU memory.

• Makes use of variable-length attention kernels (THD attention) 
in FlashAttention and TransformerEngine, to avoid calculating 
attention values between sequences. This allows packing 
sequences to arbitrary lengths.



Performance Tuning Practice

• Use the latest NVIDIA PyTorch or NeMo Image unless custom container is provided

• Enable Distributed Optimizer
• With distributed optimizer, master weights and optimizer states will be sharded across all DP ranks. Try increasing 

the number of GPUs and reducing model parallel size to increase perf.

• Enable Communication Overlapping
• --tp-comm-overlap
• --overlap-grad-reduce
• --overlap-param-gather

• Enable context parallel for long context training.

• The efficiency of CP largely depends on whether its communication can be overlapped.

• Enable Grouped GEMM if num_local_experts > 1 for MoE
• Recommended to use the TE version of Grouped GEMM (requires upgrading to MCore v0.8 and TE v1.7).
• Supports Gradient Fusion and FP8.

Prerequisites



Performance Tuning Practice

• Use just data parallelism + distributed optimizer if possible

• If this OOMs, use tensor model parallelism + sequence parallelism

• In practice, we recommend setting TP_size to be less than or equal to hidden_size / 2048 on H100.

• If this OOMs, then add pipeline parallelism into the mix

General rule: don’t over-parallelize!



Check out our documentation
https://docs.nvidia.com/nemo-framework/user-guide/latest/playbooks/index.html 

https://docs.nvidia.com/nemo-framework/user-guide/latest/playbooks/index.html


Continuous pre-training
https://docs.nvidia.com/nemo-framework/user-guide/latest/continuetraining.html 

Define configuration

Llama 3.1 8B 
as base

https://docs.nvidia.com/nemo-framework/user-guide/latest/continuetraining.html


Introducing AutoModel in NVIDIA NeMo Framework
Enables users to seamlessly fine-tune any Hugging Face model for quick experimentation

• Model parallelism to enable scaling—currently through Fully-Sharded Data Parallelism 2 (FSDP2) and Distributed 
Data Parallel (DDP), with Tensor Parallelism (TP) and Context Parallelism (CP) coming soon.

• Enhanced PyTorch performance with JIT compilation.

• Seamless transition to the latest optimal training and post-training recipes powered by Megatron-Core, as they 
become available.

• Export to vLLM for optimized inference, with NVIDIA TensorRT-LLM export coming soon.



Model customization



Model Customization for Enterprise Ready LLMs
Customization techniques to overcome the challenges of using foundation models 

Reinforcement Learning from 
Human Feedback (RLHF)

Continuously improve model as it 
is used

Your Enterprise Model

Model Customization

Sales Pipeline 
Analysis

Financial 
Modeling

Supply Chain 
Forecasting

Legal Contract 
Discovery

Start with
pre-trained model

Supervised Fine Tuning
Include domain-specific knowledge

Prompt Learning 
Add skills and incremental knowledge

Information Retrieval
Retrieve Factual Knowledge 

At Runtime

Foundation Model

(p-tuning, 
Prompt Tuning, 
ALiBi, Adapters, 

LoRA)



Suite of Model Customization Tools in NeMo
Ways To Customize Large Language Models For Your Use-Cases

PROMPT ENGINEERING PROMPT LEARNING PARAMETER EFFICIENT FINE-TUNING FINE TUNING

Data, compute 
& investment

Accuracy for specific use-cases

Challenges

Benefits
• Good results leveraging pre-

trained LLMs
• Lowest investment
• Least expertise

• Better results leveraging 
pre-trained LLMs

• Lower investment
• Will not forget old skills

• Best results leveraging pre-
trained LLMs

• Will not forget old skills

• Best results leveraging pre-
trained LLMs

• Change all model 
parameters

• Cannot add as many skills or 
domain specific data to pre-
trained LLM

• Less comprehensive ability 
to change all model 
parameters 

• Medium investment
• Takes longer to train
• More expertise needed

• May forget old skills
• Large investment
• Most expertise needed

Techniques
• Few-shot learning
• Chain-of-thought reasoning
• System prompting

• Prompt tuning
• P-tuning

• Adapters
• LoRA
• IA3

• SFT
• RLHF



Deployment



TensorRT-LLM Optimizing LLM Inference
SoTA Performance for Large Language Models for Production Deployments

Ease ExtensionSoTA Performance
Add new operators or models in Python to quickly 

support new LLMs with optimized performance
Leverage TensorRT compilation & kernels from 
FasterTransformers, CUTLASS, OAI Triton, ++

Challenges: LLM performance is crucial for real-time, cost-effective, production deployments. Rapid evolution in the LLM ecosystem, with 
new models & techniques released regularly, requires a performant, flexible solution to optimize models. 
TensorRT-LLM is an open-source library to optimize inference performance on the latest Large Language Models for NVIDIA GPUs. It is 
built on FasterTransformer and TensorRT with a simple Python API for defining, optimizing, & executing LLMs for inference in production.

# define a new activation
def silu(input: Tensor) → Tensor:
    return input * sigmoid(input)

#implement models like in DL FWs
class LlamaModel(Module)

def __init__(…)
self.layers = ModuleList([…])

def forward (…)
hidden = self.embedding(…)

for layer in self.layers:
hidden_states = layer(hidden)
 

return hidden

Numbers are preliminary based on internal evaluation on Llama 7B on H100

LLM Batching with Triton
Maximize throughput and GPU utilization 

through new scheduling techniques for LLMs

4.6x

3x

Performance TCO

A100 H100 TRT-LLM

5x

2x

Avg Latency Cost

Static Inflight Batching



TensorRT-LLM in the DL Compiler Ecosystem
TensorRT-LLM builds on TensorRT Compilation

TensorRT-LLM
LLM specific optimizations:
• FP8 quantization
• KV Caching
• Multi-GPU, Muti-Node
• Custom MHA optimizations
• Paged KV Cache (Attention)
• etc…

TensorRT
General Purpose Compiler
• Optimized GEMMs & general kernels
• Kernel Fusion
• Auto Tuning
• Memory Optimizations
• Multi-stream execution



NeMo Guardrails
Scalable rail orchestration for safeguarding enterprise generative AI

• Efficiently orchestrate multiple rails 
across applications with a modular 
framework

• Use smart defaults or customize 
and extend rails leveraging a robust 
3rd party ecosystem

• Continuously improve rail and 
application effectiveness with built-
in auditing and analytics

• Leverage open-source and portable, 
enterprise grade microservices 
ecosystem



Nemo FW Strong Scaling
More than 90% scaling efficiency
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Micro-scaling Data Formats for Deep Learning 
GPT training loss curve, using MXFP6_E3M2 for weights, activations, and gradients

“Microscaling Data Formats for Deep Learning” Darvish Rouhani B., Zhao R., More A., Hall M., Khodamoradi A., Deng S., Choudhary D., 
et al., 2023, arXiv, arXiv:2310.10537. doi:10.48550/arXiv.2310.10537
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Tensor block distribution
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Megatron-Core

Transformer 
Engine

Megatron-LM

Megatron-Core: Library for GPU optimized techniques for training 
GenAI models at-scale. 

Transformer Engine: Accelerated kernels and FP8 mixed precision. 
Specific acceleration library, including FP8 on Hopper and Blackwell.

Megatron-LM: A lightweight reference training framework for 
using Megatron-Core to build your own LLM framework.

Core value Proposition

Nemo Framework: Easy to use OOTB FW with a large model 
collections for Enterprise users to experiment, train, and deploy. 

Megatron-Energon
(Multimodal data 

loaders)

Megatron-Energon: Multimodal data loaders for Megatron-Core.

Nemo Framework

Resiliency 
Extension

Recap of NVIDIA’s GenAI Training offerings

Megatron products

Resiliency Extension: A library for resiliency features for PyTorch-
based training

NOT COMPREHENSIVE
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Key benefits of Megatron-Core



Software Choices for LLM Developers

Research Framework
Next Gen LLM Model 

Megatron-Core

Nemo FW

Megatron-Core

Model Development

Persona 1: Research in LLM 
Framework & Models 

Core optimizations/kernels for 
LLM training at scale with latest 

updates from NV.

End-to-end training open source 
framework.  Train from scratch 

w/guaranteed convergence on a specific 
set of SotA model architectures and data 

types
Fine-tuning customization techniques

Optimized conversion to TRT

PyTorch PyTorch+Lightning

Nemo FW

Megatron-Core

Integration

PyTorch+Lightning

Nemo Service
(cloud or on-prem)

Persona 3: Deploy and 
operationalize SOTA models for 

production

C
ha

lle
ng

es Supports only pre-trained community 
and NV specific models.

No train from scratch or novel model 
architectures

Microservice interfaces, not a 
framework

Deploy and tune LLM to production:  
Fine tune, containerize, microservices, 

enterprise integration, RAG
Pre-built containers and services to 
operate infrastructure and MLOps 

integration

V
al
ue

Persona 2: Develop your own LLM 
and ConvAI models from scratch

Requires developer to have their 
own framework implementation.

Only for experts in the field of 
distributed AI training software. 

M-LM 
(reference

)

Expects AI practitioner skills (training 
scripts, job).

User provides infra and operates infra.
Traditional framework only, no 

automation/services/MLops
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Benchmark details

● Weak scaling experiments with GPT models ranging from 2B to 462B parameters
● Megatron-Core demonstrates superlinear scaling up to 6144 H100 GPUs

World-Leading Training Speed and Scalability

https://github.com/NVIDIA/Megatron-LM?tab=readme-ov-file


Canonical workflow for building and deploying localized FMs
Train FM from scratch on local language data and fine-tune for individual use-cases

• EuroLLM
• Collection of Sovereign multi-lingual LLMs with a focus on EU 

languages
• Model: 1.7B, 9B (available on HF), 22B (WIP) and 9B NIMification (WIP)
• NV usage: Megatron LM, FW, NIM
• Platform: 400xH100s (MareNostrum5).

• ETH Zurich
• Building a foundation model for Swiss German
• In development: 70B pre-trained with FP8 precision
• NV Usage: Megatron LM
• Platform: CSCS ALPS (Grace Hopper)

• BritLLM
• Goal to produce training and evaluation data, freely available models 

aligned with UK interests
• Model: 3B released, developing larger and multi-lingual
• NV Usage: Megatron LM
• Platform: Isambard AI (Grace Hopper)

• Salamandra / ALIA
• Collection of Sovereign multi-lingual LLMs with a focus on Spain’s 

official languages
• Model: 2B, 7B, 40B all available on HuggingFace, 7B NIMification (WIP)
• NV Usage : Nemo Framework (1.x), NIM
• Platform : 1000+ H100s (MareNostrum5)




