
NVIDIA NeMo to train, customize and
deploy LLMs
Giuseppe Fiameni - gfiameni@nvidia.com

Solutions Architects, NVAITC EMEA

• Introduction to NeMo Framework

• NeMo curator

• Pre-training

• Model customization

• Deployment

• Megatron-LM

• Use cases

Agenda

About Me
Giuseppe Fiameni – gfiameni@nvidia.com

• Solutions Architect @ NVIDIA
• Supporting Higher Education and Research

through collaborations

• Lead of the NVIDIA AI Technology Center
(NVAITC) program in EMEA

• HPC & AI

Scaling Laws of DL Training
Performance of neural networks increases with model/dataset size

Joel Hestness et al, Baidu Research, 2017
Deep Learning Scaling is Predictable, Empirically
arXiv:1712.00409

Tom Henighan et al, OpenAI, 2020
Scaling laws for autoregressive generative modeling
arXiv:2010.14701

Building an LLM

Data
Curation

Pre-
Training

Alignment &
Customization

Data
Acquisition

Training and CustomizationData Preparation

LLMs in production

Data
Curation

Pre-
Training

Alignment &
Customization Guardrail

s

Data
Acquisition

Accelerated
Inference

…

DeploymentTraining and CustomizationData Preparation

Information
Retrieval

Overview of Nemo FW
https://github.com/NVIDIA/NeMo

• More than 800
TFLOPs/sec/GPU

• Trained over 16k+
cluster size

• Supports 1M+
sequence length

• 4D parallelism
• GPU-accelerated

data curation

• Broad support for HF
models

• 23 model families
SOL accelerated -
Incl LLM, SSMs,
MOEs, SD, VLMs,
VFMs, VLAs

• PEFT: LoRA, p-
tuning, IA3, QLoRA,
Adapters (Canonical)

• Reinforcement
learning & Model
alignment: GRPO,
RLHF PPO, DPO,
KTO, IPO, RLAIF,
SteerLM, Rejection
Sampling

• Hugging-face like
pythonic APIs

• Fault tolerance and
Resiliency to ensure
smooth training via
NVRx

Performance
& Scalability

Model
Coverage

SOTA
Algorithms

Usability &
Compatibility

8

Nemotron-4 340B Family of Models & Tools

Nemotron-4 340B Instruct Nemotron-4 340B Reward

User prompts Synthetic Data

• Generate synthetic data at scale
• 9T tokens, 50 spoken + 40 programming
 languages
• Leading performance across benchmarks:
 Math, Instruction following, Human preferences

Synthetic Data Response Score

• Scores on:
 Helpfulness, Correctness, Coherence.
 Complexity, Verbosity
• Tops Reward Bench leaderboard covering chat,
 safety, and reasoning

NeMo curator

What is Clean Data?

• The Earth is flat, and NASA is hiding the truth.

• John Doe’s Social Security Number is 123-45-6789.

• 9375028164730592846159273046851273

• test test test test test test

• …

• In machine learning, a neural network (also artificial neural network or neural net,

abbreviated ANN or NN) is a model inspired by the structure and function

of biological neural networks in animal brains.

Why Data Quality Matters
Less is more when pre-training LLMs

FineWeb: decanting the web for the finest text data at scale - https://hf.co/spaces/HuggingFaceFW/blogpost-fineweb-v1

Model Performance

Data Curation Improves Model Perfomance
NeMo Data Curator enables large-scale high-quality datasets for LLMs

• Reduce the burden of combing through unstructured data
sources

• Download data and extract, clean, deduplicate, and filter
documents at scale

NeMo Data Curator steps:

1. Data download, language detection and text extraction -
HTML and LaTeX files

2. Text re-formatting and cleaning - Bad Unicode, newline,
repetition

3. GPU accelerated Document Level Deduplication
• Fuzzy Deduplication
• Exact Deduplication

4. Document-level quality Filtering
• Classifier-based filtering
• Multilingual Heuristic-based filtering

Internet scale
datasets

Text re-formatting
+ cleaning Training

Data download +
detect language +

extract text

Document-level
quality filtering

Document-level
deduplication

NeMo Curator : Text Processing Architecture
Easily integrate different features into your existing pipelines with Python APIs

NeMo Curator: World-Class Benchmarks

~17x Faster Processing

Processing time for fuzzy deduplication of
RedPajama-v2 subset (8TB/1.78T tokens)

~17x
~11

Curator ‘On’

2.05

0.5

1

0.94

2 4
H100 nodes 80GB

Near Linear Scaling

Processing time for fuzzy deduplication of
RedPajama-v2 subset (8TB/1.78T tokens)

Scaling on 1, 2, 3, 4 H100 nodes 80GB‘On’: Data processed with NeMo Curator

‘Off’ : Data processed with a leading alternative
library on CPUs

~7% Relative Improvement in Accuracy

Reasoning Accuracy: Average score on Race,
PiQA, Winogrande, and HellaSwag for 357M

GPT base model. (Scale: 0-100)

‘On’: Processed data with NeMo Curator

‘Off’ : Raw data without curation

47.5

51

~7%

R
ea

so
ni

ng
 A

cc
ur

ac
y

S
co

re

Curator ‘On’Curator Off

0.65

46

48

47

49

51

50

Curator Off

P
ro

ce
ss

in
g

T
im

e
(h

rs
)

P
ro

ce
ss

in
g

T
im

e
(h

rs
)

Pre-training

Tensor & Pipeline Parallelism Sequence Parallelism
Selective Activation

Recomputation

Reduced memory footprint and allows
for large-scale training of LLMs across

accelerated infrastructure

Working with tensor processing to
increase the batch size that can be

support for training

Smart activation checkpointing provides
greatest trade-off between memory and

recomputation

Building Generative AI Foundation Models
Efficiently and quickly training models using NVIDIA NeMo

GPU 0

Time

Feature

Traditionally, LLMs (>175GB)
every activation is recomputed

GPU 1

GPU 2

. . .

. . .

. . .

. . .

Saved

Recomputed

Batch

Different Parallelism - An example

Different Parallelism - An example
Start with Tensor Parallelism

Different Parallelism - An example
Add Pipeline Parallelism

Different Parallelism - An example
Add Data Parallelism

Different Parallelism - An Example

•Put it all together

MoE Layer

Expert Parallelism
Distributing experts in mixture-of-experts layers over GPUs

Router

Expert 1

Input Token

Expert 2 … Expert N

MoE Layer Router

Expert 1

Input Token

Expert 2 … Expert N

GPU 1 GPU 2 GPU N

Sequence Parallelism (SP)

• SP only shards the outputs of specific transformer layers (typically Dropout and LayerNorm
activations) along the sequence dimension across tensor parallel (TP) ranks.

Context Parallelism (CP)

• CP partitions the entire sequence (all activations, not just specific layers) across GPUs

SP and CP

• Sequence Parallelism
• Splits the processing of tokens in a

sequence across multiple GPUs.
• Each GPU has a copy of the model

parameters and works on a different
chunk of the input tokens.

• Mostly used for specific layers (like
Dropout or LayerNorm) and is often
combined with tensor parallelism for other
parts of the model.

• Only certain intermediate activations (not
all) are partitioned, and communication
needs are lower since each GPU can
process its chunk mostly independently.

• Context Parallelism
• Splits the entire sequence (all tokens and

their activations) across multiple GPUs.
• All network inputs and all intermediate

activations are partitioned along the
sequence dimension, not just some layers.

• Each GPU works on a subset of the
sequence and must communicate with
others to compute attention, since
attention requires information about all
tokens (not just the local chunk).

• Can be used standalone (without requiring
tensor parallelism), and is especially useful
for very long sequences, reducing the
memory burden on each GPU.

26

2
6

Context Parallelism overview | Benchmark details

Llama2-7B, H100, Megatron-Core v0.6 with nemo.24.03.01 container

• Context parallelism (CP) partitions the
network inputs and all activations along
sequence dimension, whereas the previous
Sequence parallelism (SP) only splits the
sequence of Dropout and LayerNorm
activations.

• With CP, Megatron-Core achieves 20x
speedup for a Llama2-7B model on 1024
H100 GPUs with 1024K seq length.

• Both CP and SP are also supported in the
LLaVA pipeline in Megatron-Core for
multimodality training.

Context Parallelism for Long-Context Training

https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html
https://github.com/NVIDIA/NeMo/blob/main/docs/source/performance/performance_long_sequence.md

28

Fast Distributed Checkpointing for Large-scale Training

2
8

• Megatron-Core’s fully parallel and async approach
achieves a 42x reduction in checkpoint overhead for a
Nemotron-4-340B, compared to native torch.save().

• Users have the flexibility to use different training
configurations when resuming from a checkpoint saved
with Megatron-Core.

• “save” and “load” APIs almost transparently replace the
equivalent APIs in Pytorch for ease-of-use.

Train Generative AI Models More Efficiently with New NVIDIA Megatron-Core Functionalities - Blog

https://developer.nvidia.com/blog/train-generative-ai-models-more-efficiently-with-new-nvidia-megatron-core-functionalities/

Integration with NVIDIA Resiliency Extension

What is NVIDIA Resiliency Extension?

• Python package for extending PyTorch-based
frameworks with resiliency features

• pip install nvidia-resiliency-ext

• Can be used standalone or with Megatron-Core
and NeMo

• Open source on GitHub:
https://github.com/NVIDIA/nvidia-resiliency-ext

Functionality

• Straggler GPU detection

• Fault and hang detection

• In-job auto restart and graceful exit

• Coming soon:

• In-process restart

• Hierarchical Checkpointing (In-memory & Global
storage)

NeMo & Megatron-LM integration

• Integration w/ NeMo and Megatron-LM (since
MCorev0.9)

• Recommended as the best path to achieve the highest
effective training time and performance for LLMs

In-Process Restart In-Job Restart Workload restart

Target latency ~10-20s ~1-2 min Few minutes

Method
Automatic restart of training

loop with healthy ranks without
process restart.

Automatic restart of training
processes without job restart.

Automatic restart of training job
without user intervention.

Example recovery
scenarios

Recover from transient
network link flap.

Recover from corrupted
CUDA contexts (e.g.,
uncorrectable ECC).

Recover from permanent node
or GPU failure.

NVIDIA Resiliency Extension

https://github.com/NVIDIA/nvidia-resiliency-ext

New Feature - Sequence Packing

seq 1

seq 2

seq 3

seq 4

padding is wasteful

seq 1 seq 2 seq 3

seq 4 seq 5

seq 6 seq 7

Without Seq Packing - use padding

With Seq Packing

• Sequence packing is a technique to improve training efficiency
when handling datasets with variable-length sequences, which is
common in language modelling

• Eliminates the need for padding

• Allows more tokens to be processed in each micro batch,
maximizing both GPU compute and GPU memory.

• Makes use of variable-length attention kernels (THD attention)
in FlashAttention and TransformerEngine, to avoid calculating
attention values between sequences. This allows packing
sequences to arbitrary lengths.

Performance Tuning Practice

• Use the latest NVIDIA PyTorch or NeMo Image unless custom container is provided

• Enable Distributed Optimizer
• With distributed optimizer, master weights and optimizer states will be sharded across all DP ranks. Try increasing

the number of GPUs and reducing model parallel size to increase perf.

• Enable Communication Overlapping
• --tp-comm-overlap
• --overlap-grad-reduce
• --overlap-param-gather

• Enable context parallel for long context training.

• The efficiency of CP largely depends on whether its communication can be overlapped.

• Enable Grouped GEMM if num_local_experts > 1 for MoE
• Recommended to use the TE version of Grouped GEMM (requires upgrading to MCore v0.8 and TE v1.7).
• Supports Gradient Fusion and FP8.

Prerequisites

Performance Tuning Practice

• Use just data parallelism + distributed optimizer if possible

• If this OOMs, use tensor model parallelism + sequence parallelism

• In practice, we recommend setting TP_size to be less than or equal to hidden_size / 2048 on H100.

• If this OOMs, then add pipeline parallelism into the mix

General rule: don’t over-parallelize!

Check out our documentation
https://docs.nvidia.com/nemo-framework/user-guide/latest/playbooks/index.html

https://docs.nvidia.com/nemo-framework/user-guide/latest/playbooks/index.html

Continuous pre-training
https://docs.nvidia.com/nemo-framework/user-guide/latest/continuetraining.html

Define configuration

Llama 3.1 8B
as base

https://docs.nvidia.com/nemo-framework/user-guide/latest/continuetraining.html

Introducing AutoModel in NVIDIA NeMo Framework
Enables users to seamlessly fine-tune any Hugging Face model for quick experimentation

• Model parallelism to enable scaling—currently through Fully-Sharded Data Parallelism 2 (FSDP2) and Distributed
Data Parallel (DDP), with Tensor Parallelism (TP) and Context Parallelism (CP) coming soon.

• Enhanced PyTorch performance with JIT compilation.

• Seamless transition to the latest optimal training and post-training recipes powered by Megatron-Core, as they
become available.

• Export to vLLM for optimized inference, with NVIDIA TensorRT-LLM export coming soon.

Model customization

Model Customization for Enterprise Ready LLMs
Customization techniques to overcome the challenges of using foundation models

Reinforcement Learning from
Human Feedback (RLHF)

Continuously improve model as it
is used

Your Enterprise Model

Model Customization

Sales Pipeline
Analysis

Financial
Modeling

Supply Chain
Forecasting

Legal Contract
Discovery

Start with
pre-trained model

Supervised Fine Tuning
Include domain-specific knowledge

Prompt Learning
Add skills and incremental knowledge

Information Retrieval
Retrieve Factual Knowledge

At Runtime

Foundation Model

(p-tuning,
Prompt Tuning,
ALiBi, Adapters,

LoRA)

Suite of Model Customization Tools in NeMo
Ways To Customize Large Language Models For Your Use-Cases

PROMPT ENGINEERING PROMPT LEARNING PARAMETER EFFICIENT FINE-TUNING FINE TUNING

Data, compute
& investment

Accuracy for specific use-cases

Challenges

Benefits
• Good results leveraging pre-

trained LLMs
• Lowest investment
• Least expertise

• Better results leveraging
pre-trained LLMs

• Lower investment
• Will not forget old skills

• Best results leveraging pre-
trained LLMs

• Will not forget old skills

• Best results leveraging pre-
trained LLMs

• Change all model
parameters

• Cannot add as many skills or
domain specific data to pre-
trained LLM

• Less comprehensive ability
to change all model
parameters

• Medium investment
• Takes longer to train
• More expertise needed

• May forget old skills
• Large investment
• Most expertise needed

Techniques
• Few-shot learning
• Chain-of-thought reasoning
• System prompting

• Prompt tuning
• P-tuning

• Adapters
• LoRA
• IA3

• SFT
• RLHF

Deployment

TensorRT-LLM Optimizing LLM Inference
SoTA Performance for Large Language Models for Production Deployments

Ease ExtensionSoTA Performance
Add new operators or models in Python to quickly

support new LLMs with optimized performance
Leverage TensorRT compilation & kernels from
FasterTransformers, CUTLASS, OAI Triton, ++

Challenges: LLM performance is crucial for real-time, cost-effective, production deployments. Rapid evolution in the LLM ecosystem, with
new models & techniques released regularly, requires a performant, flexible solution to optimize models.
TensorRT-LLM is an open-source library to optimize inference performance on the latest Large Language Models for NVIDIA GPUs. It is
built on FasterTransformer and TensorRT with a simple Python API for defining, optimizing, & executing LLMs for inference in production.

define a new activation
def silu(input: Tensor) → Tensor:
 return input * sigmoid(input)

#implement models like in DL FWs
class LlamaModel(Module)

def __init__(…)
self.layers = ModuleList([…])

def forward (…)
hidden = self.embedding(…)

for layer in self.layers:
hidden_states = layer(hidden)

return hidden

Numbers are preliminary based on internal evaluation on Llama 7B on H100

LLM Batching with Triton
Maximize throughput and GPU utilization

through new scheduling techniques for LLMs

4.6x

3x

Performance TCO

A100 H100 TRT-LLM

5x

2x

Avg Latency Cost

Static Inflight Batching

TensorRT-LLM in the DL Compiler Ecosystem
TensorRT-LLM builds on TensorRT Compilation

TensorRT-LLM
LLM specific optimizations:
• FP8 quantization
• KV Caching
• Multi-GPU, Muti-Node
• Custom MHA optimizations
• Paged KV Cache (Attention)
• etc…

TensorRT
General Purpose Compiler
• Optimized GEMMs & general kernels
• Kernel Fusion
• Auto Tuning
• Memory Optimizations
• Multi-stream execution

NeMo Guardrails
Scalable rail orchestration for safeguarding enterprise generative AI

• Efficiently orchestrate multiple rails
across applications with a modular
framework

• Use smart defaults or customize
and extend rails leveraging a robust
3rd party ecosystem

• Continuously improve rail and
application effectiveness with built-
in auditing and analytics

• Leverage open-source and portable,
enterprise grade microservices
ecosystem

Nemo FW Strong Scaling
More than 90% scaling efficiency

45

Micro-scaling Data Formats for Deep Learning
GPT training loss curve, using MXFP6_E3M2 for weights, activations, and gradients

“Microscaling Data Formats for Deep Learning” Darvish Rouhani B., Zhao R., More A., Hall M., Khodamoradi A., Deng S., Choudhary D.,
et al., 2023, arXiv, arXiv:2310.10537. doi:10.48550/arXiv.2310.10537

46

Tensor block distribution

47

Megatron-Core

Transformer
Engine

Megatron-LM

Megatron-Core: Library for GPU optimized techniques for training
GenAI models at-scale.

Transformer Engine: Accelerated kernels and FP8 mixed precision.
Specific acceleration library, including FP8 on Hopper and Blackwell.

Megatron-LM: A lightweight reference training framework for
using Megatron-Core to build your own LLM framework.

Core value Proposition

Nemo Framework: Easy to use OOTB FW with a large model
collections for Enterprise users to experiment, train, and deploy.

Megatron-Energon
(Multimodal data

loaders)

Megatron-Energon: Multimodal data loaders for Megatron-Core.

Nemo Framework

Resiliency
Extension

Recap of NVIDIA’s GenAI Training offerings

Megatron products

Resiliency Extension: A library for resiliency features for PyTorch-
based training

NOT COMPREHENSIVE

48

Key benefits of Megatron-Core

Software Choices for LLM Developers

Research Framework
Next Gen LLM Model

Megatron-Core

Nemo FW

Megatron-Core

Model Development

Persona 1: Research in LLM
Framework & Models

Core optimizations/kernels for
LLM training at scale with latest

updates from NV.

End-to-end training open source
framework. Train from scratch

w/guaranteed convergence on a specific
set of SotA model architectures and data

types
Fine-tuning customization techniques

Optimized conversion to TRT

PyTorch PyTorch+Lightning

Nemo FW

Megatron-Core

Integration

PyTorch+Lightning

Nemo Service
(cloud or on-prem)

Persona 3: Deploy and
operationalize SOTA models for

production

C
ha

lle
ng

es Supports only pre-trained community
and NV specific models.

No train from scratch or novel model
architectures

Microservice interfaces, not a
framework

Deploy and tune LLM to production:
Fine tune, containerize, microservices,

enterprise integration, RAG
Pre-built containers and services to
operate infrastructure and MLOps

integration

V
al
ue

Persona 2: Develop your own LLM
and ConvAI models from scratch

Requires developer to have their
own framework implementation.

Only for experts in the field of
distributed AI training software.

M-LM
(reference

)

Expects AI practitioner skills (training
scripts, job).

User provides infra and operates infra.
Traditional framework only, no

automation/services/MLops

50

5
0

Benchmark details

● Weak scaling experiments with GPT models ranging from 2B to 462B parameters
● Megatron-Core demonstrates superlinear scaling up to 6144 H100 GPUs

World-Leading Training Speed and Scalability

https://github.com/NVIDIA/Megatron-LM?tab=readme-ov-file

Canonical workflow for building and deploying localized FMs
Train FM from scratch on local language data and fine-tune for individual use-cases

• EuroLLM
• Collection of Sovereign multi-lingual LLMs with a focus on EU

languages
• Model: 1.7B, 9B (available on HF), 22B (WIP) and 9B NIMification (WIP)
• NV usage: Megatron LM, FW, NIM
• Platform: 400xH100s (MareNostrum5).

• ETH Zurich
• Building a foundation model for Swiss German
• In development: 70B pre-trained with FP8 precision
• NV Usage: Megatron LM
• Platform: CSCS ALPS (Grace Hopper)

• BritLLM
• Goal to produce training and evaluation data, freely available models

aligned with UK interests
• Model: 3B released, developing larger and multi-lingual
• NV Usage: Megatron LM
• Platform: Isambard AI (Grace Hopper)

• Salamandra / ALIA
• Collection of Sovereign multi-lingual LLMs with a focus on Spain’s

official languages
• Model: 2B, 7B, 40B all available on HuggingFace, 7B NIMification (WIP)
• NV Usage : Nemo Framework (1.x), NIM
• Platform : 1000+ H100s (MareNostrum5)

